
NPSCS-92-015

NAVAL POSTGRADUATE SCHOOL
Monterey, California

00-

MN

Iz

IMPROVING THE ASW SYSTEM EVALUATION TOOL

by

Yuh-jeng Lee

October 1992

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, California 93943

93-00322

NAVAL POSTGRADUATE SCHOOL

Monterey, California

REAR ADMIRAL R. W. WEST, JR. HARRISON SHULL

Superintendent Provost

This report was prepared for and funded by the Antisubmarine Warfare Division (Op-71), Office
of Chief of Naval Operations.

This report was prepared by:

YUH-JENG LE'
Assistant Professor of Computer Science

Reviewed by: Released by:

T 'T'WPAUL MAR
Associate Ch:ain for Research Dean of Re h

"UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION]AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPSCS-92-015

6&. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
ComputerScience DepLt (ifcappible) Naval Postgraduate School
Naval Postgraduate School CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Naval Postgraduate School
Monterey, CA 93943-5100

8a. NAME OF FUNDING/SPONSORING I lb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I (if applicable)
Antisubmarine Warfare Division OP-71

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERSOffceof hif f Nva Oeraios ROGRAM PROJECT TASK WORK UNIT
Office of Chief of Naval Operations ELEMENT NO. NO. NO. ACCESSION NO.

Washington, D.C. 20350-2000

11. TITLE (Include Security Classification)
Improving the ASW System Evaluation Tool

12. PERSONAL AUTHOR(S)
Yuh-jeng Lee

13a. TYPE OF REPORT I 13b. TIME COVERED T 14. DATE OF REPORT (Year Monh, Day) 15. PAGE •UNT
Final I FROM _ TO October I9~ ' '

16. SUPPLEMENTARY NOTATION

17. COSATI CODES I18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD IGROUP SUB-GROUP ASW, System Evaluation Tool (ASSET), object-oriented design

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report summarizes the work on the evaluation, design, and reimplemenation of part of the ASW System Eval-
uation Tool (ASSET), performed in the Computer Science Department, Naval Postgraduate School, under the
sponsorship of the Antisubmarine Warfare Division (OP-7 1), Office of Chief of Naval Operations. We analyzed
and implemented the improvements suggested in previous evaluations of various sub-areas of ASSET. In addition,
we have designed and implemented a prototype user interface shell for ASSET on a Sun Sparcstation running X
windows.

20. DISTAIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[] UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [3 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 42 bre Code '22 PFFH 0YBN

Yuh-jeng Lee 64 L361

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All oOth detios am obolt UNCLASSIFIED

Improving the ASW System Evaluation Tool

Final Report

By

Yuh-jeng Lee

Computer Science Department
U.S. Naval Postgraduate School

Code CSILE
Monterey CA 93943

ABSTRACT

This report summarizes the work on the evaluation, design, and re-
implementation of part of the ASW System Evaluation Tool (ASSET),
performed in the Computer Science Department, Naval Postgraduate
School, under the sponsorship of the Antisubmarine Warfare Division (OP-
71), Office of Chief of Naval Operations. We analyzed and implemented
the improvements suggested in previous evaluations of various sub-areas
of ASSET. In addition, we have designed and implemented a prototype
user interface shell for ASSET on a Sun Sparcstation running X windows.

Implemented Improvements of the ASSET

1. Detection Model
A compound Lamnbda-Sigma jump detection model was implemented to simulate the

detection of submarines. Also, the target's most detectable frequency and detection rate
were allowed to vary with environmental region. Multiple engagements between platforms
were allowed.

2. MPA Model
A glimpse rate model was used to determine detection opportunities of MPA and to

approximate a continuous-looking sensor pattern. The glimpsing sensor field detects a target
which is within the sensor region at the time of a glimpse with a probability of detection of
1.0.

ASSET allocates MPA to cues generated from the tracker-correlator by selecting SPA/
MPA pairs using the ratio of MPA's time on-station to the SPA size as the selection criterion.
If time permits, the MPA will stay on search region after prosecuting a submarine for
another detection opportunity.

3. Converting ASSET code to CLOS
We investigated the feasibility and techniques of converting current ASSET code to

CLOS. We used a conversion utility to help transform the ASSET code to CLOS. However,
a significant portion of the modification has to be performed manually. Due to time con-
straints, only part of the conversion task was completed.

4. Reference
A detail report of the work mentioned above can be found in: P-T. Chang, "Evaluation

and Improvement of the ASW System Evaluation Tool", M.S. Thesis, Naval Postgraduate
School, Monterey, California, March 1992.

Acoesslon For

NTIS GRA&I
DTIC TAB fl
Unannoi-oi d Q
Justlf!cý tion

B•-, _ DMC QUALITy TINSPE=TD 5
, D!strlbution/

Avail andlor
blo , 'iS '

hi 2

Implementation of a User Interface Shell for ASSET on a
SUN SPARCstation 2 running X Windows

A prototype User Interface was designed to allow similar interaction as given on the Mac-
intosh computers. The goal was to allow for pull-down menus and pop-up dialog boxes in
the X Window system. The only constraint was the system had to be written in Allegro
C2mmon Lisp.

To achieve the windowed nature of ASSET including the pull-down menus and pop-up
dialog boxes, it was necessary to use a tool kit that would give that functionality. Based on
the Common Lisp constraint, the Common Lisp Interface Manager (CLIM) was chosen as
the tool kit.

What follows is a description of the code that is used in the user interface:

File: asset-guLd

Macro: define-application-frame

define-application-frame is a CLIM function that defines an application frame. This is
used to specify the details of all panes that make up the user interface. Included in these
details are the pane names and layout. For any particular pane, the pane type and various
associated functions are specified. The following panes are used:

menu pull down menu support
geoplot all graphic drawing like maps will be drawn here

the function draw-world is used to draw to the geoplot pane
alert program generated comments are displayed here
avv accepting values pane - this is the pop-up dialog manager
edit the pane for normal user interacting with the system other than

through dialog boxes - currently the introduction to the program
is drawn here using the function draw-intro

The layout description specifies the proportions of pane sizes that will make up the user
interface. See the accompany screen snapshot.

Method: draw-Intro

This function draws the introductory screen to the edit pane of the application. The calls to
cursor-y-percent merely position the following line of text vertically at that particular per-
centage of the total page size. Center-text-in-window centers each line of text in the edit
pane. Both of these funtions together allow the text to be auto-centered and auto-placed
independent of the window geometry.

Function: cursor-y-percent

3

Places the following text at the specified percentage down the edit pane. This function first
queries the target stream for the overall height. It then sets the current cursor position to the
proper value using the specified percentage.

Function: center-text-In-window
Centers the following text in the target window. This is accomplished using the available

width from the target stream, along with the string width to determine the appropriate offset.

Macro: define-asset-command (corn-simulation-asset
This macro describes the "Simulation" pull-down menu. In this macro, value is set based

on the users selection. Once a selection is made, a case function calls the proper function for
each selectable menu item. In this case only two menu items do anything, the "Edit Clock
Parameters" selection and the "Quit" selection.

Macro: define-asset-command (corn-map-asset

This macro describes the "Map" pull-down menu. The only active choice is "Edit Loca-
tion/Size".

Function: set-map-specs
This function is responsible for displaying the pop-up dialog box to change the location or

the size of the displayed map. Through the pop-up, the user can specify the current latitude,
longitude and view radius.

Macro: define-asset-command (com-blue-side-asset ...
This macro describes the "Blue Side" pull-down menu. There are no active selections.

Macro: define-asset-command (corn-red-side-asset .

This macro describes the "Red Side" pull-down menu. There are no active selections.

Macro: define-asset-command (corn-utilities-asset .
This macro builds the "Utilities" menu and all associated sub-menus. There are no active

selections.

Macro: define-asset-command (com-workspace-asset

This macro builds the "Workspace" pull-down menu. There are no active selections.

Macro: define-asset-command (com-moe-asset
This macro builds the "MOE" pull-down menu. There are no active selections.

Macro: define-asset-command (com-choose-asset)

This macro is currently called when the user selects "Edit Clock Parameters" from the
"Simulation" pull-down menu. Upon selection a global variable is changed.

Macro: define-asset-command (corn-exit-asset)

This macro is called when the user selects "Quit" from the "Simulation" pull-down menu.

4

Function: run-asset

After setting some pertinent variables, this function will create the top-level application
frame for the interface and then run it.

File: drawing.d

Function: set-default-drawing-globals

This function sets the latitude to 65 North and the Longitude to 10 West. It also sets the
view radius of the map to 1500 km.

Method: draw-world

Calls the function draw map, that does the actual drawing.

Function: draw-map

Draw-map is responsible for scaling and drawing information to the geoplot pane. First,
the window's inside height and width are determined. Next, the required spread in latitude
and longitude for the specified view-radius is calculated. These values are view-lat and
view-long respectively. Following this, the appropriate translations and scalings to make the
map fit in the window are calculated. Finally, with the scaling and translations turned on
inside of CLIM, the map is drawn.

In order to draw the map, the data was put into a list of polygons. The polygons are drawn
one at a time. The polygons represent the coast-line of the continents and islands.

Following the map, the latitude and longitude lines are drawn and then the red dot that
makes up the map center.

Function: draw-lat-long-lines

Currently the number of latitude and longitude lines to draw is determined by the magni-
tude of the view radius. If the view radius is greater than 8000 km, then latitude lines are
drawn every 10 degrees and longitude lines are drawn every 20 degrees. If the view radius is
between 3000 km and 8000 km, then the lines are drawn every 10 degrees for latitude and
every 15 degrees for longitude. The final division is at a view radius of less than 3000 km.
For this case, the latitude and longitude lines are drawn every 5 degrees and 10 degrees
respectively.

Function: draw-map-center

A simple red circle marks the center of the map.

File: utlls.d

Function: create-asset-map

This function opens the raw map data file, and reads each polygon. Based on the size of
the polygon, that is the number of points, the polygon is saved or discarded. This is a over-
simplified filter that throws out the smaller polygons, so as to not clutter up the map.

$

File: Ioad-em.d

This file will load the three parts of the interface, namely asset-gui.cl, new-map.cl, and
drawing.cl.

Running Asset:
To run asset, be on a machine that has Allegro Common Lisp and supports CLIM. Start

Common Lisp, and execute (load "load-emcl"). This will load all the pertinent files. After
this, the root window must be created. To do this, execute (setq *root* (clim:open-root-win-
dow :clx)). Once the root window is created, ASSET can be run by: (run-asset *root*).

6

Appendix: Source code for the User Interface Shell for ASSET on a
Sun Sparcstation 2 running X windows

,;File: asset-gui.cl

(setq *var* 1)

(clim:define-application-frame asset (

(:panes ((itle :title
:display-string ONew Asset")

(menu :command-menu
:default-size :comnpute)

(geoplot :application
:default-text-style (:fix :bold :very-large)
.scroll-bars nil
.display-function 'draw-world)

(alert :application
:default-text-style '(:fix :bold :very-large)
:scroll-bars nil)

(avv : accept-values
:display-function '(clim:accept-values-pane-

displayer
:displayer display-avv))

(edit :application
:default-text-style '(:fix :bold :very-large)
:display-functjon 'draw-intro
:scroll-bars nil)))

(:layout ((default
(:coluxnn :rest

(menu :compute)
(:row :rest

(:colunmn :rest
(geoplot :rest)
(alert 1/4))

(edit 1/3)))))))

(defmethod draw-intro ((frame asset) stream)
(cursor-y-percent frame stream 10)
(center-text-in-window stream OASSETO)
(terpri stream)
(cursor-y-percent frame stream 25)
(center-text-in-window stream OASW SYSTEMS*)
(terpri stream)
(center-text-in-window stream OEVALUATIONft)

7

(terpri stream)
(center-text-in-window stream "TOOL')
(terpri stream)
(cursor-y-percent frame stream 60)
(center-text-in-window stream 'Allegro CLO)
(terpri stream)
(center-text-in-window stream "Build 0.10)
(terpri stream)
(cursor-y-percent frame stream 85)
(center-text-in-window stream '01 June 19920))

(defun cursor-y-percent (frame stream percentage)
(setq height (clim:window-inside-height (clim:get-frame-pane frame

'edit)))
(multiple-value-bind (current-x-position current-y-position)

(clim:stream-cursor-position* stream)
(setq new-y-position (floor (* height (/ percentage 100))))
(clim:stream-set-cursor-position* stream

current-x-position
new-y-position)))

(defun center-text-in-window (stream text)
(setq avail-width (clim:stream-text-margin stream))
(setq string-width (clim:text-size stream text))
(clim:indenting-output (stream (floor (I (- avail-width string-

width) 2)))
(format stream text)))

(define-asset-command (com-simulation-asset :menu 'Simulation')
()

(setq value
(clim:menu-choose
'(('Edit Clock Parameters* :value 1)

('Edit Umpire Parameters" :value 2)
('Environmental Parameters ->'
:item-list (('Enter Noise Freqs" :value 3)

('Enter Proploss Curves' :value 4)
('Define Environmental Regions' :value 5)))

('Start Simulation' :value 6)
('Abort Simulation" :value 7)
('Pause' :value 8)
('Continue' :value 9)
('Mode ->O
:item-list (('Event Step' :value 10)

('Time Step' :value 11)))
('Save to Disk' :value 12)

8

(oQuit" :value 13))
:label "Simulation"))

(case value
(1 (com-choose-asset))
(13 (com-exit-asset))))

(define-asset-command (com-map-asset :menu "Mapn)
()

(setq value
(clim:menu-choose
'(("Edit Location/Size" :value 1)

(ORefresh" :value 2)
(-Plot Blue Tactical Picture" :value 3)
(oPlot Red Tactical Picture" :value 4)
("Turn Display Off* :value 5))

:label "Map*))
(case value
(1 (set-map-specs))))

(defun set-map-specs ()
(let ((stream (clim:frame-query-io clim:*application-frame*)))

(clim:accepting-values (stream :own-window t :label "Map
Location / Size*)

(setq *lat* (clim:accept 'integer :default *lat*
:prompt "Latitude (Degrees)"
:stream stream))

(terpri stream)
(setq *long* (clim:accept 'integer :default *long*

:prompt "Longitude (Degrees)"
:stream stream))

(terpri stream)
(setq *view-radius* (clim:accept 'float :default *view-

radius*
:prompt "View Radius"
:stream stream))

(terpri stream)
(clim accept-values-command-button (stream) "View Entire

World"
(setq *full-screen-view* 1)))))

(define-asset-command (com-blue-side-asset :menu "Blue Side")
()

(setq value
(clim:menu-choose
'(("Submarine" :value 1)

("Level 1 Command" :value 2)

9

"("Level 2 Command" :value 3)
"(*ASWC2" :value 4)
("Fusion Centern :value 5)
"(OMPA SquadronO :value 6)
"("Sub Op Auth" :value 7)
"("Comm Sat" :value 8)
(OSensing Sato :value 9)
(OFAS Coverage Area" :value 10)
(OSURTASS" :value 11)
("Surface Formation" :value 12)
(OHFDF" :value 13)
(*Mine Field" :value 14)
("Trip Wire" :value 15))

:label "Blue Sides)))

(define-asset-command (com-red-side-asset :menu "Red Side")
()

(setq value
(clim:menu-choose
'((*Submarine' :value 1)

("Level 1 Command" :value 2)
("Level 2 Command" :value 3)
(NASWOC" :value 4)
("Fusion Center" :value 5)
(OMPA Squadron" :value 6)
(*Sub Op Auth" :value 7)
("Comm Sat" :value 8)
("Sensing Sat" :value 9)
("FAS Coverage Area" :value 10)

("SURTASS" :value 11)
("Surface Formation" :value 12)
(OHFDF" :value 13)
("Mine Field" :value 14)
("Trip Wire" :value 15))

:label "Red Side")))

(define-asset-command (com-utilities-asset :menu "Utilities")
()

(setq value
(clim:menu-choose
'(("Range Rings ->"

:item-list (("Build" :value 1)
("Plot" :value 2)
("Erase" :value 3)
("Delete" :value 4)
("Plot Intersection" :value 5)

10

(MErase Intersection" :value 6)))
(NTracks ->a

:item-list ((WBuild" :value 7)
(,Plot" :value 8)
("Erase" :value 9)
(*Delete" :value 10)))

(sRegions ->a

:item-list (("Build" :value 11)
("Plot" :value 12)
(OErase" :value 13)
(ODelete" :value 14)))

(OPlans ->a

:item-list (("Build" :value 15)
(OPlot" :value 16)
("Erase" :value 17)
(*Delete" :value 18))))

:label "Utilities")))

(define-asset-command (com-workspace-asset :menu "Workspace")
()

(setq value
(clim:menu-choose
'(("Blue ->"

:item-list (("Recall" :value 1)
("Save" :value 2)
("Delete" :value 3)

("Clear" :value 4)))
("Red ->"

:item-list (("Recall" :value 5)
("Save" :value 6)
("Delete" :value 7)
("Clear" :value 8))))

:label "Workspace")))

(define-asset-command (com-moe-asset :menu "MOE")
()

(setq value
(clim:menu-choose
'(("Display Blue Submarine Attrition" :value 1)

("Display Blue Surface Engagements" :value 2)
("Display Blue MPA Attrition" :value 3)
("Display Red Submarine Attrition" :value 4)
("Display Red Surface Engagements" :value 5)
("Display Red MPA Attrition" :value 6)
("Save MOEs" :value 7))

:label "MOE")))

11

(define-asset-command (corn-choose-asset)

(if (*var* 1)
(setq *var* 2)
(setq *var* 1))

(define-asset-command (corn-exit-asset)

(clim:frame-exit clim:*application-frame*))

(defun run-asset (root)
(set-default-drawing-globals)
(setq *earth-.radius* 6378)
(let ((asset (clim:make-application-frame 'asset

:parent root :height 400 :width 700)))
(clim:run-frame-top-level asset)))

,;File: drawing.cl

(setq *earth-radius* 6378)
(setq *full...screen-.view* 0)

(defun set-default-drawing-globals (
(setq *lat* 65)
(setq *long* -10)
(setg *view-.radius* 1500))

(defmethod draw-world ((frame asset) stream)
(draw-map frame stream))

(defun draw-map (frame stream)
;;; determine the correct scaling to fit the world in the geoplot
pane

(let* ((height (clim:window-inside-heig1bt (clim:get-frame-pane
frame 'geoplot)))

(width (clim:window-inside-width (clim:get-frame-pane frame
'geoplot)))

(view-lat ((*2 UI *view-.radius* *earth-.radius*)) UI 180
pi))

(view-long ((*2 UI *view-.radius*
(**earth..radius*

(cos (* *lat* UI pi 180)))) U1
180 pi)))

;;calculate the transformations

12

(scale-x 1/ width view-long))
(scale-y (* -1 (U height view-lat)))
(trans-x (- (U view-long 2) *long*))
(trans-y (* -1 (+ (U view-lat 2) *lat*))))

;;; adjust the scales and translations for the window shape
(cond ((>= width height)

(setq scale-x (U height view-long))
(setq trans-x (- (/ (* view-long (U width height)) 2)

long)))
((> height width)
(setq scale-y (* -1 (I width view-lat)))
(setq trans-y (s -1 (+ (I (. view-lat (/ height width))

2) *lat*)))))
(clim:with-scaling (stream scale-x scale-y)

(clim:with-translation (stream trans-x trans-y)
(dolist (list *swdb*)

(clim:draw-polygons stream list :closed nil :ink
clim:+dark-sea-green+

:filled nil :line-thickness 2))
(draw-lat-long-lines frame stream
(draw-map-center frame stream)))))

(defun draw-lat-long-lines (frame stream)
;;; the view-radius determines the number of lat-long lines to

draw
(cond ((>= *view-radius* 8000)

(do* ((lat -80 (+ lat 10)))
((= lat 90))

(clim:draw-line* stream -180 lat 160 lat :ink
clim:+light-blue+))

(do* ((long -180 (+ long 20)))
((= long 200))

(clim:draw-line* stream long -90 long 90 :ink
clim:+light-blue+)))

((> *view-radius* 3000)

(do* ((lat -80 (+ lat 10)))
((= lat 90))

(clim:draw-line* stream -180 lat 160 lat :ink
clim:+light-blue+))

(do* ((long -180 (+ long 15)))
((= long 195))

(clim:draw-line* stream long -90 long 90 :ink
clim:+light-blue+)))

(t
(do* ((lat -80 (+ lat 5)))

((= lat 85))

13

(clim:draw-line* stream -180 lat 160 lat :ink
clim:+light-blue+))

(do* ((long -180 (+ long 10)))
((= long 190))

(clim:draw-line* stream long -90 long 90 :ink
clim:+light-blue+)))))

(defunr draw-map-center (frame stream)
(clim:draw-circle* stream *long* *lat* 1 :line-thickness 5 :ink

clim:+red+))

;;; File: utils.cl

(defun-map (filename)
(with-open-file (output "asset-map2.cl :direction :output

:if-exists :overwrite :if-does-not-exist :create)
(format output "(setq *swdb*-%(list-%")
(with-open-file (input filename :direction :input)

(let ((point-count 0)
(polygon nil))

(do ((item (read input nil input) (read input nil input)))
((eq item input))

(cond ((= item 400)
(if (> point-count 80)

(output-polygon-to-file polygon output))
;;; (format *standard-output* N-a-%* polygon)
(setq polygon nil)
(setq point-count 0))

(t
(push item polygon)
;;; (format *standard-output* O-a-%" polygon)
(setq point-count (+ point-count 1)))))))))

(defun output-polygon-to-file (poly file)
(format file 0'-a-%" poly))

;,; File: load-em.cl

(load "-/asset/asset-gui.clo)
(load *-/asset/new-map.cle)
(load "-/asset/drawing.cla)

14

Distribution List

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943

Antisubmarine Warfare Division (OP-7 1)
Office of Chief of Naval Operations
Washington DC 20350-2000

Chairman, Computer Science Department
Code CS
Naval Postgraduate School
Monterey, CA 93943

Prof. James N. Eagle
Code OR/ER
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943

Prof. Yuh-jeng Lee 5
Code CS/Le
Naval Postgraduate School
Monterey, CA 93943

15

